Resumen:
We propose a unified moving boundary problem for surface growth by electrochemical and chemical vapor deposition, which is derived from constitutive equations into which stochastic forces are incorporated. We compute the coefficients in the interface equation of motion as functions of phenomenological parameters. The equation features the Kardar-Parisi-Zhang (KPZ) nonlinearity and instabilities which, depending on surface kinetics, can hinder the asymptotic KPZ scaling. Our results account for the universality and the experimental scarcity of KPZ scaling in the growth processes considered.
Palabras Clave: diffusion-limited aggregation, vicinal surfaces, dynamics, model, electrodeposition, fluctuations, equilibrium, interfaces, solidification, imbibition
Índice de impacto JCR y cuartil WoS: 8,100 - Q1 (2023)
Referencia DOI: https://doi.org/10.1103/PhysRevLett.87.236103
Publicado en papel: Diciembre 2001.
Publicado on-line: Noviembre 2001.
Cita:
R. Cuerno, M. Castro, Transients due to instabilities hinder Kardar-Parisi-Zhang scaling: A unified derivation for surface growth by electrochemical and chemical vapor deposition. Physical Review Letters. Vol. 87, nº. 23, pp. 236103.1 - 236103.4, Diciembre 2001. [Online: Noviembre 2001]